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; I. INTRODUCTION

In the present report we study the velocity and temperature boundary-layer
development within a centered expansion wave moving into a stationary fluid. A
centered expansion wave can be generated either in a shock tube or a tube wind
tunnel such as designed by Indwig.l It is assumed that the fluid has initially
a uniform temperature To but is separated by a diaphragm in two regions, with
different pressures. If the diaphragm is suddenly removed, an expansion wave
propagates into the stationary high pressure region. In the expansion region,

§ the temperature of the fluid decreases due to the drop in the pressure.

‘ Therefore, if the wall is kept at the initial temperature To' there will be a
net heat transfer from the wall to the fluid. This heat transfer and the
boundary-layer development in the expansion region is the subject of the present
analysis.

As early as 1859, Riemann2 analyzed the propagation of a plane disturbance
of finite amplitude in an unsteady one-dimensional isentropic flow.
Subsequently, many other authors studied the shock tube problem, Huber et a1,3
for example, provided analytical expressions for the velocity, pressure, and
temperature of the inviscid flow. However, in order to calculate the heat
transfer characteristics, the viscous boundary-layer development on the inner
wall must be computed. Mirels® analyzed the boundary-layer flow behind the
expansion wave by assuming that the expansion wave is a line of discontinuity

, separating the undisturbed high pressure region from the rarefied gas region.

1 Cohen’ used a coordinate expansion method to solve the boundary-layer flow

| within the centered expansion wave with a finite width. Cohen's treatment,
which is an improvement over Mirels' solution, is based on the assumption that
the wall is isothermal or, equivalently, that the thermal conductivity of the

1H.Ludwig, "Tube Wind Tunnel: A Special Type of Blowdowm Tumnel,” AGARD
Report 143, July 1957.

2g. Riemann, "Ueber die Fortpflanaung ebener Luftwellen von endlicher
Schwingungsweite,” Abh. der Koniglichen Gessellechaft der Wissemschaftenm,
Vol. 8, pp. 43-65, 1858-1859.

3p.W. Buber, C.E. Pittom, and F. Delpino, "Experimental Investigation of
Moving Pressure Disturbance and Shock Waves and Correlation with Ome-
Dimensional Umsteady-Flow Theory," NACA TN 1903, 1949.

4y, Mirvele, "Boundary Layer Behind Shock or Thin Expansion Wave Moving into
Stationary Fluid,” NACA TN 3712, 1958.

5%.B. Cohen, "A Power-Series Solution for the Unsteady Laminar Boundary-Layer

Plow in an Expaneion Wave of Finite Width Moving Through a Gas Initially at
Rest,"” NACA TN 3943, 1957.
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wall {s infinite. Hall® later generalized Cohen's solution by allowing the wall
to have a finite thermal conductivity, and gave solutions of heat transfer for
soms representative values of thermal conductivity. Hall's solution in the case
of adisbatic wall predicts a temperature in the boundary layer that is equal to
the temperature in the freestream.

The present study provides solutions for the boundary-layer flow
corresponding to two wall thermal conditions, namely, an adiabatic condition and
an isothermal condition at undisturbed fluid temperature. The solutions are
obtained by applying Howarth's transformation and a similarity transformation
via one-parameter groups which reduces the number of independent variables from
three to two and then a series expansion. The first three terms of the series
are usad to obtain a solution of second-order accuracy.’

1I. PROBLEM FORMULATION

The boundary-layer flow in the region of the expansion wave as shown in
Pigure 1 is considered to be two-dimensional, unsteady, compressible, and
laminar. The fluid is ideal gas. External to the boundary layer, the flow is
assumed to be unsteady, one-dimensional and inviscid. The freestream flow is
assumed to be known and it is used as the matching condition for the boundary-
layer solution.

6.c. Hall, "Laminar Boundary Layer Developed Within Uneteady Expansion and
Compression Waves," AIAA Journal, Vol. 10, p. 499, April 1972.

7L. Howarth, "Concemming the Effect of Compreseibility of Laminar Boundary
Layere and Their Separatiom,” Proceedings of the Royal Society, Series A,
Vol. 194, p. 16, 1948.

BQ.J.A. Morgan, "The Reduction by One of the Number of Independent Variablee
in Some System of Partial Differential Equations,” Q.J.M., p. 250, 1952.

94.c. Haneen, Similarity Analysee of Boundary Value Problems in Engineering,
Prentice Hall, En‘g'!e_nﬁ% Z'Zlg'fs, NJ, 1964.
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Figure 1.

We assume that the undisturbed region is kept at a temperature T,.
the wavefront of the expansion wave propagates at the sound speed of
Ut = (yRTo)1 2. The velocity, temperature, and pressure in the expansion region

outside the boundary layer are given by Huber et al
variable § as follows:

Velocity
u, (t,x) = ——£ = F(E)
; Y+1
Temperature

8,(t,x) -;‘ (1 -l e)? = oe)

y+1
Pressure
! - 2y/(y-1)
py(t,x) = (1 - Lot ) = H(E)

where the similarity variable £, derived from the similarity transformation via

one-parameter groups is

x = x/L

5'1+(X/t) ’ -
t = tL./Ur

i o e S
I I A TR R N I i e e
.. R R LA R R W S VAL AR AL NS S LS TRV

Shock Tube Flow at t = t*

Then

in terms of a similarity

(2)

(3)

(4)
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and L is a reference length. As shown in Figure 1, =0 denotes the expansion
wavefront and £=1 18 located at the origin of the wave. F(£), G(E), and H(E)
are, respectively, called the velocity function, temperature function, and
pressure function of the inviscid flow. The velocity uy is the inviscid
velocity normalized by U, the tempeEature 0,by the reference temperature

T, = U%/R, and the pressure p; by pU,+ P, is the density of the gas at rest
ahead of the expansion wave,

In the boundary layer we assume that the thermal conductivity k and
specific heat C  are constants and that the viscosity u is proportional to the N
temperature. Tﬁe viscosity yu can be made dimensionless as

yo= E/ur - T/T, (5)

where the reference viscosity u_ is evaluated at the reference temperature Tpe
We also define the following dimensionless variables and parameters:

y' = Re!’2y/L, u = u/u_,
v = ReI/ZV/Ut, p =P 02, o= T, o =3lo, (6)

2
Re = U L po/ur, Pr Cput/k’ T = R /R .

The governing equations for the two-dimensional, unsteady, compressible
boundary-layer flow are, in terms of these variables,

Continuity
% .3 9 -
TRET" (pu) + 3y (pv) = 0 ¢))
Momentum
du du Su, _d 2, Su_
pFE* uaxt Vay?) T " ax t 3y (v 57 (8)
10




25
\.
: Energy
o
! ( + vyl 2 20
7 3y’ Pr 9y v ay’
) (9)
-
8 =13, 2 du 2
% + - [3t+u8x+e(3y')]
:"' State
- p = pb (10)
The pressure p in Eq. (8) is the same as the Py in Eq. (3). ter introducing
. Howarth's transformation
S y"
y =/ edy' (11)
N 0
' a streamfunction ¢, which satisfies the continuity equation, can be defined as
.
. - -al l —l —x —x
X bl T2 Y ( Ay ax T ) (12)
: Substituting Eqas. (11) and (12) into Eqs. (8) and (9), we have
3 2 3
) atay ay axay ax 3 2 p dx 3
. y ay
3" and
2
: 20 , 3y 30 _3p0 _p 376 Y-l &
it dy 3x 3x 3y Pr 2 Y P
; 3y
. (14)
) .[32+3-‘13—P+ﬁ (?.21)2] :
at 3y dIx O ayz 3}
In addition, we have the following boundary conditions for ¢ and 8: I
l
.o :
5 11 1
[
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At the wall, y = 0 ,
u --%% = 0 (no slip condition) éa
(15) j
v = -~%-%¥-- 0 (impermeable condition) i
..
8 =6 =1 (isoth 11 "
vy isothermal wall at To) (16) -
~
or i}
30 %
3;-- 0 (adiabatic wall) (17) %
At the outer edge of the boundary layer, y + «
=3
u 3y ui(t,x) (18)
0 = Bi(t,x) (19)

III. METHOD OF SOLUTION

We obtain a solution of Eqs. (13) and (14) through a similarity
transformation via one-parameter groups and a subsequent series expansion of the
functions y and 6. The similarity transformation reduces the three independent
variables (t,x,y) to two similarity varishles (£,n) which are

E=1+ (x/t) and n = y/tl/2 (20)

A detailed derivation of these twc similarity variables is given by Chang.10

The similarity transformation also transforms the dependent variables, y and 6
in Eqs. (13) and (14) into

10, . Chang, "Unsteady Compressible Boundary Layer Flows Within a Centered
Expansion Wave and Behind a Strong Plane Blast Wave," Ph.D. Dissertation,
The University of Iowa, December 1972.

12

----------------- F T SN - B
PRI IPY TR T VRN YR ars ey PO WY GEP O U S P W PP Uy S Sy

s v N "
........




T T U M SIS et e et el g e DAY e A et b/t g i LA A S e A R Nt RO A

.................
Fa b de Nt aeal NI NNl et il el I Rl R e I e e T e S . S R e

Dk |

T a
%%

-
(]

1/2

"’(t’x'y) =t £(g »n) (21)

b=

r

0(t,x,y) = g(g,n) (22)

Substitution of Eqs. (3) and (20-22) into Eqs. (13) and (14) results in

1 H'
(1 E)fEn 2 nfrm + fnfEn fE fnn g m + annn (23)
and
(1-¢)g -lng +fg -fg =Ll Hg (24)
E 2 °n n°g E®n Pr “mm
-1 g n? 2}
+ - !+ ' o —
~ g [(-E)H' + £ W'+ £

where H' is the derivative of H(£) with respect to £. A repeated application of
the transformation technique shows that no new similarity variables that combine
the variables £ and n exist. However, we can define a locally similar variable

as

1/2

z = n/g (25)

Using the new variable z, a fast-converging series solution to the problem may
be constructed as follows

£ -t =] £ (@ (26)
n=0
3y af T P
u=oc=—=FE) }] Ef£'(2) (27)
y an n=0 n
1 _1,. § .o
6 = g(g,n) >+ [6CE) - ngo &g, (2) (28)

Substituting the above expressions and their derivatives into Eqs. (23) and
(24), we have, after grouping the terms with the same power of £, the following
system of ordinary differential equations.

13
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- Zero-order equations (n=0)

£20 4 (1/2)2f" - £ = -1
(1/Pr)g; + (1/2)zg(') -g,=-1
First-order equations (n=1)
1

l.' -— " - = ZL l" - i " - 1 1
fl + 2 Zfl 2f1 Y+l fo Y+l fofo fo

+_2-(f:))2+2];lgo_1;1.

y+1 v+l v+l
D ST S -1 3yl . zx=h o
Pr %1 + 2 %8 2gl Pr 2(y+l1) g, + (4 Y+1) g

2 3
- (330 % - 57 &8,

2 2 2
- G5 * (SDEs, v

Second-order equations (n=2)

£5' + (1/2)2f] - 3£} = F*(2)

(1/Pr)g; + (1/2)zg} - 38, = G*(2)

The expressions F*(z) and G*(z) are given in the Appendix.

conditions,Eqs. (15) - (19), become:

at the wall, z = 0, for n> 0

£,(0) = 0, £1(0) = 0

14

(29)

(30)

(31)

(32)

(33)

(34)
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g,(0) = 0 for isothermal wall (35)

or

g,(0) = 0 for adiabatic wall

at the outer edge of the boundary layer, z+w

f; (w) = 1, f;(ﬂ) = 0 for n>l
g°(°) =1, gn(ﬂ) =0 for n»l (36)
8;(“) =0 for n>0

IV. NUMERICAL RESULTS AND DISCUSSION

The preceding three sets of ordinary differential equations were solved
numerically. With Pr = 0.72 and vy = 1.4 the numerical results of the velocity
functions f], fi, and f), and the temperature functions 8,» 8)» and g, for both
isothermal and adiabatic walls are tabulated in Tables 1 and 2 and plotted in
Figures 2 and 3. Since there is no temperature term involved in the zero-order
momentum equation, Eq. (29), the function f; is independent of the temperature
condition at the wall. Therefore, as shown in Figure 2, the velocity function
fa is the same for the two wall conditions. However, the function fi and fé are
certainly affected by the wall temperature. For the case of isothermal wall the
present results are identical to Cohen's solutions.lo

Once the zero-order, first-order, and second-order functions are computed,
the solutions to the problem in a three-term series can be readily constructed.




TABLE 1. VELOCITY FUNCTIONS

Isothermal wall Adiabatic wall
z I J; f; S Ji /i
ny 0  0.00000 0.00000 0.00000  0.00000  0.00000 0.00000
i 0.2 0.20643 0.13364 0.06425 020643  0.11252 0.05276
04 037738 0.22220 0.09358 037735  0.18962 0.08014
i 0.6 0.5117 0.27376 0.09495 051717  0.23642 0.08529
0.8 0.63011 0.29602 0.07631  0.6301)  0.25834 0.07322
NS 1.0 0.72016 0.29611 0.04555  0.72016  0.26084 0.04973
- 1.2 0.79100 0.28046 0.00973  0.79100  0.24907 0.02052
1.4 0.8459 0.25460  -0.02540  0.843596 022773  —0.0094S
1.6  0.88801 022310  -0.05576  0.83800  0.20081  -0.03638
1.8 0.91971 0.18957  -0.07788 091971  0.171%6  -0.05778
o 20 0.94325 0.15666  -0.09373  0.94325  0.14245  -0.07243
5 2.4 097288 0.09917  -0.10045  0.97288  0.09087  —0.08185
. 28  0.98783 0.05719  -0.08558  0.98783  0.05271  -0.07162
N 3.0 0.99208 0.04202  -0.07417  0.99205 003882  -0.0626!
~, 34 0.99680 0.02128  -0.05023  0.99680  0.01975  —0.04287
ol 38 0.99848 0.00989  -0.03016 0.99884  0.0092S - 0.02585
40 0.99935 0.00653  -0.02246  0.99935  0.006]S  —0.01924
ol 50 1.00010 0.00047  -0.00389  1.00010  0.00062  -0.00317
{] 6.0 100020 0.00018  -0.00696
= 70 100020  -0.00064  -0.00110
\ _i~ 8.0 100020 -0.00099  -0.00125
[ ]
'S¢
.: TABLE 2. TEMPERATURE FUNCTIONS
- Isothermal wall Adiabatic wall
o z L) ] 173 8 82
A 0 000000 ©0.00000 0.00000 -0.18905  -0.121%
o 02 0177 003701  -0.02129% -0.1794  -0.10638
04 032907 00781  -0.0136 -0.160T7  -0.07999

-0.13707 -0.03828
-0.1121 -0.0068S
~0.09000 0.01685

0.457123 0.11981 0.00384
0.8 0.56468 0.15207 0.01733
1.0 0.653% 0.17434 0.02195

]
e
*

8o
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
’ 1.2 071219 0.19629 0.01737 1.00000 -0.07014 0.03229
‘;_5 1.4 0.7970% 0.18880 0.00563 1.00000 -0.05352 0.04042
,':. 1.6 083554 0.18346 -0.01035 1.00000 ~0.04009 0.04283
o 1.8 0.87411 0.17213 -0.02768 1.00000 -0.0295%4 0.04134
A 20 0.90460 0.15673 -0.04395 1.00000 -0.02144 0.03744
- 24 0.94689 0.12032 -0.06726 1.00000 -0.01084 0.02693
28 0967 0.08461 -0.07489 1.00000 -0.00522 0.017117
- 30 09719 0.068091 -0.07341 1.00000 -0.00356 0.01323
& 3.4 0.909% 0.04334 -0.06322 1.00000 ~0.00159 0.00742
- 3.8 099532 0.02553 —0.04868 '1.00000 -0.00068 0.00389
- 4.0 0.99691 0.01916 -0.04068 1.00000 ~0.00436 0.00278
o 5.0 0.999% 0.00383 -0.01248 1.00000 -0.00002 0.00041
e 6.0 1.000%0 0.00081 -0.00270
o0 7.0 1.00060 0.00033 -0.00101
8.0 1.00080 0.00007 -0.00100
-
.'
S
'b:;
\:,
-~
*
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A. Velocity Profiles
From Eq. (27), the velocity in the boundary layer is simply
2
- ' ' '
u = F(fy + &) +£°£)) (37)
or
u/u, = £f' + gf' + Ezf' (38)
i o 1 2

for F = u, given in Eq. (1). Figures 4 and 5 show u/u, vs z, respectively, for
isothermal and adiabatic walls. One observes that at a given z, u/u1 increases
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vith {. This is because, as shown in Eq. (1), the inviscid velocity u; relative
to the wavefront appears to accelerate in the positive £ direction. In other
words, the fluid is expanding from the high pressure to the lower pressure
region and the further the downstream distance is from the wavefront the higher
the fluid velocity becomes. As a result, even though the viscosity diffusion in
the boundary layer tends to increase the boundary growth the acceleration may
suppress some growth of the boundary layer. If the boundary-layer thickness is
taken to be approximately z, = 4 from Figures 4 and 5, Eqs. (25) and (20) give

z, = yG//x+t -4 (39)

s

Thus, at a given instance, the boundary-layer thickness y, behind the wavefront
may grow like 4/x+t. The larger the time, the slower the growth of the
boundary-layer thickness will be with respect to x. In other words, the
boundary layer grows rapidly immediately behind the expansion wavefront and
flattens out further downstream from the wavefront.

[ 0.2 0.4 0.6 0.8 1.0
[ 4

Figure 4. Velocity Profiles for an Isothermal Wall at
g =0, 0,1, 0,2, and 0.3

9 0.2 0.4 0.6 0.3 1.0
W

Figure 5. Velocity Profiles for an Adiabatic Wall at
g =0, 0.1, 0.2, and 0.3
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A careful comparison between the profiles shown in Figures 4 and 5 reveals
that at a given z the velocity is slightly higher for the isothermal wall due to
heat addition from the wall to the fluid.

B. Temperature Profiles

The temperature in the boundary layer is

1 1 2
e =g+ (c-) (8, +Eg +E%,)
or
.g_i - [$+ (e —%—) (g, + &g, + Ezgz)]/G (40)

The solutions are plotted in Figure 6. The temperature in the boundary layer is
seen to be higher than that in the freestream and the value of 6/6, increases
with £ as a result of an increasing viscous heating in the boundary layer.
Figure 6 shows that at £ = 0.3 the wall temperature is higher than the local
inviscid temperature by approximately 10 percent.

O/8; (ISOMERMAL WALL)

.1.0 1.2 1.00 1.06 1.08 1.10 1.12

3
—— (ORENNL WL
S——
2
4
1 b
1302 = 0.3
\ ~
o ] X _”0.2 ‘:.T’
1.0 1.002 1.008 1.006 1.008 1.00 1.012
/8 (ADIABATIC WALL)

Figure 6. Tewmperature Profiles at £ = 0, 0.1, 0.2, and 0.3

Figure 6 also shows that because of heat addition to the fluid from the
wall, the surface temperature for the isothermal wall is higher than that for
the adiabatic wall by 3.34 percent at £ = 0.1, 6.6 percent at £ = 0.2, and 10.9
percent at £ = 0.3; giving the temperature ratio T, ({sothermal) to T,
(adiabatic) of approximately (1 + 0.335£). Hall considered the case with a
finite wall thermal conductivity. He found that the temperature in the
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boundary layer on an adiabatic wall is the same as the temperature in the
inviscid freestream. This result is equivalent to the zero-order solution

(10‘0, E - 0) of qu (60)0

C. Heat Transfer

For an isothermal wall the local heat transfer from the wall to the fluid
is

oT
OV--kﬁ Y=0 (41)

Written in dimensionless form, it becomes

90
9 ™ ~3y" | y'=0 (42)

Transformed into (£,z) coordinate system, it is

I Ve UV

. (6 - 1) [sgc0r+ea)0r+e7a5(0))] (43)

The values of 36’ gi, and gi are, respectively, 0.9575, 0.15074, and -0.25445.
Figure 7 and Table 3 show that at a given instant the heat transfer increases
rapidly behind the wavefront until it approaches a maximum, and then likely
decreases. This can be explained as a result of an interplay among the
expansion of the freestream, the growing boundary-layer thickness, and the
viscous heating. From Eq. (2) we notice that the freestream temperature
decreases with increasing distance from the wavefront. Consequently, heat
transfer is from the wall to the fluid. On the other hand, the combined effect
of the growing boundary-layer thickness and the viscous heating provides a
resistance to the heat transfer further downstream. Equation (43) shows that
the heat transfer at a given location decreases with respect to time and is
approximately proportionate to ¢! 2. Physically this is reasonable because at
a given location the boundary layer grows in time after the expansion wave
passes by. The growth of the boundary layer deters the heat transfer.
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Figure 7. Skin Friction and Heat Transfer

TABIE 3. SKIN FRICTION AND HEAT TRANSFER

Cy (Ret) J Gt %
¢ Isothermal Adiabatic Isothermal
0 0.0000 0.0000 0.0000
0.025 0.1469 0.1463 0.0491
0.050 0.2054 0.2042 0.0675
0.078 0.2487 0.2463 0.0003
0.100 0.2839 0.2003 0.0501
0.125 Q3138 0.3091 0.097%
0.150 0.339¢ 0.3337 0.1041
0.178 0.3627 0.3553 0.10%0
0.200 0.3833 0.3743 0.1130
0.225 0.4018 0.3912 0.1161
0.250 0.418S 0.4063 0.1186
0.275 0.4337 0.4199 0.1208
0.300 0.4476 0.4321 0.1218
0.328 0.4603 0.4431 0.1226
0.378 0.4824 0.4618 0.120
0.400 0.4920 0.4697 0.1228
0.450 0.5087 0.483) 0.1214
0.500 0.524 0.49% 0.119

AR

Barasataely

The coefficient of local heat transfer {s determined by Newton's cooling
law

(% .'thqh)
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or

-1/2

A AICAAY S

h = qR(Re B/ 2[(1/m)-6] ! (44)

>
.

S
¢ .

- where R 1s the gas constant. The function G is given in Eq. (2).

N
o D. Skin Friction
. The friction coefficient on the wall is defined as
3
:;‘.
2 1 -aU

- Ce =~ 2% 3Y| y=0 (43)

pU
r

i; After coordinate transformation and series expansion, Eq. (45) becomes
>

5
~ C, = (Re t£)™V/2 FH[£3(0) + ££7(0) + £2£;3(0)] (46)
%
z The values of £, £j(0), and £3(0) are, respectively, 1.1284, 0.7946, 0.41781
i7 for the isothermal wall and 1.1284, 0.65896, 0.32903 for the adiabatic wall.
N The plot of Cf(Ret)l/z is also given in Figure 7 and Table 3. There is no large

difference in skin friction between the isothermal wall and the adiabatic wall

X because both have very similar velocity profiles as shown in Figures 4 and S.

- Specifically, at £ = 0.3 the skin friction for the isothermal wall is
2 approximately 5.5 percent higher than that for the adiabatic wall.

§ V. SUMMARY AND CONCLUSIONS
-“:
:? Solutions were obtained for the unsteady compressible laminar boundary-
% layer flow that develops within a centered expansion wave for isothermal and

adiabatic walls. The solutions were obtained by a method of similarity

N transformation via one-parameter groups and a power series expansion in terms
2~ of a dimensionless distance { from the expansion wavefront. The series
;C expansion includes terms up to second order of £, and thus constitutes an
- improvement over Hall's zero-order solution for the temperature in the boundary

. layer over an adiabatic wall. The present results show that at a given i
" location the isothermal wall surface temperature is higher than the adiabatic |
. wall surface temperature by a factor of approximately 0.335 £. ;
N |
! Y
o
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APPENDIX A

Function F* in Eq. (33) and Function G* in Eq. (34)
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Function F* of Eq. (33)

P = (LD - (3 5D - (gs,

5 -1 ' tey
-(3+2 1—;1-)5 + (Yﬂ]f f1 - (53 l)f

2

- u £ 4+ 3( )f"f + =2 3 l_l £!
(Y+l)2 0 (y +l)2 0 Y1 70
~1 bt § -1,2
-2 £l + 2 —=g - (I3)%
(Y+l)2 0°0 +1 1 y+1 2

Function G* of Eq. (34)

1 y-1 " 1 y-1
o2 = 5 (3 Yo1 *+ 751 )8 * G a7 ]

4
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NOMENCLATURE
coefficient of local skin friction
specific heat at constant pressure
inviscid velocity function, Eq. (1)
right-hand side of Eq.(33), Appendix A
transformed streamfunction, Eq. (21)
transformed streamfunction, Eq. (26), n = 1,2,3,...
inviscid temperature function, Eq. (2)
right-hand side of Eq. (34), Appendix A
transformed temperature function, Eq. (22)
transformed temperature function, Eq. (28)
inviscid pressure function, Eq. (3)
heat transfer coefficient
thermal conductivity
reference length
integer, n = 0,1,2,...
dimensionless pressure
dimensional pressure
dimensionless freestream pressure
Prandtl number
Reynolds number
dimensional heat flux at the wall

dimensionless heat flux at the wall

gas constant
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T = dimensional temperature

'l'1 = dimensional freestream temperature

T, = dimensional temperature of the undisturbed fluid

T, = reference temperature Urz/R =y T,

Ty = dimensional wall temperature

t = dimensionless time EUr/L

t = dimensional time

t* = dimensionless time, Figure 1

U = x-component velocity, dimensional

U, = reference velocity, speed of the expansion wavefront /YRTO

u = x-component velocity, dimensionless, Eq. (6)

uy = dimensionless freestream velocity j

v = y-component velocity, dimensional 1

v = y-component velocity, dimensionless, Eq. (6) i
]

x,y' = dimensionless coordinates, Figure 1 and Eq. (6)

x,Y = dimensional coordinates !
y = dimensionless, transformed coordinate y', Eq. (11) i
z = variable, Eq. (25) i
Y = ratio of specific heats g
n = gimilarity variable, Eq. (20) E
8 = dimensionless temperature i
61 = dimensionless freestream temperature

ew = dimensionless wall temperature

u = dimensionless viscosity !
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; = dimensional viscosity

Mo = reference viscosity

£ = gimilarity variable, Eq. (4)

P = dimensionless density, Eq. (6)
° = dimensional density

P = reference density

v = gtreamfunction, Eq. (12)

® = outer edge of the boundary layer
Subscripts

i = inviscid

r = reference

w = wall condition

0 = undisturbed
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